Trigonometric Identities

Trigonometric Identities

The Basics

Euler Equation: eiθ=cosθ+isinθ

tanθ=sinθcosθ

cotθ=1tanθ=cosθsinθ

secθ=1cosθ

cosecθ=1sinθ

Pythagorean formula

for sines and cosines: sin2θ+cos2θ=1

for tangents and secants: sec2θ=1+tan2θ

for cotangents and cosectants: cosec2θ=1+cot2θ

Angle Addition

sin(θ+ϕ)=sinθcosϕ+cosθsinϕ

cos(θ+ϕ)=cosθcosϕsinθsinϕ

sin(θϕ)=sinθcosϕcosθsinϕ

cos(θϕ)=cosθcosϕ+sinθsinϕ

tan(θ+ϕ)=tanθ+tanϕ1tanθtanϕ

tan(θϕ)=tanθtanϕ1+tanθtanϕ

Double Angles

sin2θ=2sinθcosθ

cos2θ=cos2θsin2θ=2cos21=12sin2θ

tan2θ=2tanθ1tan2θ

Squared

sin2θ=1cos2θ2

cos2θ=1+cos2θ2

tan2θ=1cos2θ1+cos2θ

Half Angles

sin(θ/2)=±0.5(1cosθ)

cos(θ/2)=±0.5(1+cosθ)<

tan(θ/2)=sinθ1+cosθ=1cosθsinθ

Triple Angles

sin3θ=3sinθ4sin3θ

cos3θ=4cos3θ3cosθ

tan3θ=3tanθtan3θ13tan2θ

Addition

sinθ+sinϕ=2sinθ+ϕ2cosθϕ2

sinθsinϕ=2cosθ+ϕ2sinθϕ2

cosθ+cosϕ=2cosθ+ϕ2cosθϕ2

cosθcosϕ=2sinθ+ϕ2sinθϕ2

Products

sinθcosϕ=sin(θ+ϕ)+sin(θϕ)2

cosθcosϕ=cos(θ+ϕ)+cos(θϕ)2

sinθsinϕ=cos(θϕ)cos(θ+ϕ)2

Hyperbolic

sinhθ=eθeθ2=isiniθ

coshθ=eθ+eθ2=cosiθ

tanhθ=sinhθcoshθ=eθeθeθ+eθ=itaniθ

eθ=coshθ+sinhθ

eθ=coshθsinhθ