Trigonometric Identities
The Basics
Euler Equation: eiθ=cosθ+isinθ
tanθ=sinθcosθ
cotθ=1tanθ=cosθsinθ
secθ=1cosθ
cosecθ=1sinθ
Pythagorean formula
for sines and cosines: sin2θ+cos2θ=1
for tangents and secants: sec2θ=1+tan2θ
for cotangents and cosectants: cosec2θ=1+cot2θ
Angle Addition
sin(θ+ϕ)=sinθcosϕ+cosθsinϕ
cos(θ+ϕ)=cosθcosϕ–sinθsinϕ
sin(θ−ϕ)=sinθcosϕ–cosθsinϕ
cos(θ−ϕ)=cosθcosϕ+sinθsinϕ
tan(θ+ϕ)=tanθ+tanϕ1−tanθtanϕ
tan(θ−ϕ)=tanθ−tanϕ1+tanθtanϕ
Double Angles
sin2θ=2sinθcosθ
cos2θ=cos2θ−sin2θ=2cos2−1=1−2sin2θ
tan2θ=2tanθ1−tan2θ
Squared
sin2θ=1−cos2θ2
cos2θ=1+cos2θ2
tan2θ=1−cos2θ1+cos2θ
Half Angles
sin(θ/2)=±√0.5(1−cosθ)
cos(θ/2)=±√0.5(1+cosθ)<
tan(θ/2)=sinθ1+cosθ=1−cosθsinθ
Triple Angles
sin3θ=3sinθ–4sin3θ
cos3θ=4cos3θ–3cosθ
tan3θ=3tanθ–tan3θ1−3tan2θ
Addition
sinθ+sinϕ=2sinθ+ϕ2cosθ−ϕ2
sinθ–sinϕ=2cosθ+ϕ2sinθ−ϕ2
cosθ+cosϕ=2cosθ+ϕ2cosθ−ϕ2
cosθ–cosϕ=−2sinθ+ϕ2sinθ−ϕ2
Products
sinθcosϕ=sin(θ+ϕ)+sin(θ−ϕ)2
cosθcosϕ=cos(θ+ϕ)+cos(θ−ϕ)2
sinθsinϕ=cos(θ−ϕ)−cos(θ+ϕ)2
Hyperbolic
sinhθ=eθ−e−θ2=isiniθ
coshθ=eθ+e−θ2=cosiθ
tanhθ=sinhθcoshθ=eθ−e−θeθ+e−θ=−itaniθ
eθ=coshθ+sinhθ
e−θ=coshθ–sinhθ